Chemical Synthesis

Chemistry SynthesisIn order to develop enzymes that function on artificial genetic polymers, researchers must have access to XNA substrates (nucleotide triphosphates and oligonucleotides) that can be produced on the scales required for enzyme evolution and eventual downstream applications. This challenging endeavor requires establishing new chemical synthesis strategies that enable the production of XNA monomers on the multi-gram scale. In addition, new methodologies are needed to synthesize XNA substrates with expanded chemical functionality.

Read more…


Enzyme Engineering

Enzyme EngineeringSynthetic genetics will require a wide range of enzymes that can modify XNA substrates in different ways. Of these, polymerases represent an important initial function due to their ability to synthesize and replicate genetic information. To help meet this challenge, we have developed a general strategy for evolving XNA polymerases in vitro. Our technology, referred to as droplet-based optical polymerase sorting (DrOPS), employs an optical sensor to monitor polymerase activity inside the microenvironment of uniform synthetic compartments generated by microfluidics. 

Read more…


Structure Determination

Stucture AnalysisThe evolution of polymerases that can synthesize and recover genetic information stored in XNA polymers demonstrates that the biology concepts of heredity and evolution are not limited to the natural genetic polymers of DNA and RNA. Examining how these enzymes function at a molecular level is necessary for understanding their mechanism of action and guiding the design of new XNA enzymes that function with enhanced activity.

Read more…


In Vitro Selection (SELEX)

In Vitro SelectionIn vitro selection is a powerful method for evolving nucleic acid molecules with specific target binding affinity or catalytic activity. Unfortunately, natural genetic polymers have limited utility in applications that require high biological stability, as these polymers are rapidly degraded by endogenous nucleases. By comparison, most XNAs are resistant to nuclease digestion, making them valuable reagents for diagnostic and therapeutic applications that require high biological stability.

Read more…